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Intelligent Signal Processing for Detection System Optimization

Chi Yung Fu,*† Loren I. Petrich,‡ Paul F. Daley† Alan K. Burnham†
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A wavelet-neural network signal processing method has demonstrated approximately

tenfold improvement in the detection limit of various nitrogen and phosphorus compounds

over traditional signal-processing methods in analyzing the output of a thermionic detector

attached to the output of a gas chromatograph.  A blind test was conducted to validate the

lower detection limit.  All fourteen of the compound spikes were detected when above the

estimated threshold, including all three within a factor of two above.  In addition, two of six

were detected at levels 1/2 the concentration of the nominal threshold. We would have had

another two correct hits if we had allowed human intervention to examine the processed

data. One apparent false positive in five nulls was traced to a solvent impurity, whose

presence was identified by running a solvent aliquot evaporated to 1% residual volume,

while the other four nulls were properly classified.  We view this signal processing method

as broadly applicable in analytical chemistry, and we advocate that advanced signal

processing methods be applied as directly as possible to the raw detector output so that less

discriminating preprocessing and post-processing does not throw away valuable signal.

*E-mail: fu1@llnl.gov
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Progress in analytical chemistry over the years has enabled increasingly lower detection

limits.  Much of this has been due to advances in electronics, better materials, and better

microfabrication capabilities.  One area that does not appear to have been fully exploited yet is

advanced signal processing, which can be a key component of any sensing system. If not done

well, the preprocessing inherent in any instrument design can throw out valuable information,

and subsequent use of advanced signal processing methods, no matter how capable, will not be

able to recover signal lost by improper pre-processing. A very significant advantage in utilizing

advanced signal processing is that as more capable algorithm is available, upgrading system

performance can be very simple since it entails no hardware component changes and no

expensive system to replace.

It is useful at the outset to contrast the objective of our work to other signal interpretation

activities.  Chemometrics1 ordinarily looks at methods of separating a signal into its constituent

parts, be it determining the relative fractions of spectral mixtures, as in principal component

analysis, or resolving overlapping spectral or chromatographic peaks, although two review

articles2,3 did report of few papers on denoising.  Instead, the focus here is to separate the signal

from noise coming from instrumentation and/or the detector so that it is more amenable to

interpretation by chemometrics or other methods.  One can conceive of hybrid systems in which

the integration of separation from noise and separation into components maximizes system

performance.

Combination of signal processing methods has the potential to extract information more

completely than by using a single method.  Different non-redundant methods have different

strengths and weaknesses, and these combinations can take advantage of these different

characteristics.  Biological systems, such as vision, often use such combinations.4
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We have developed an intelligent signal processing method that can be a central aspect of

optimized system design and extraction.  It is based on an adaptive combination of wavelet

filtering and neural network processing.  Because our system came from biological inspiration,

we call our system BISP, which stands for biological inspired signal processing. It is currently

implemented with a graphical user interface to enable various users to access these advanced

techniques.  In the long term, this type of method could be built into a signal-processing chip

(ASIC, full-custom, or DSP) for real time processing, especially when handling the enormous

amount of data that some 2-D or 3-D high-resolution sensors collect.

In this work, we show that it is possible to reliably extract gas chromatographic (GC)

peaks at signal-to-noise levels substantially less than one.  This method has demonstrated almost

tenfold improvement over more conventional methods based on running averages and a low-pass

analog filter.  We view this as prototypical of what might be possible for a wide range of

analytical detection devices.

MATHEMATICAL METHODS

The entire signal extraction process can be summarized by the following sequence of

operations:  (a) remove background or other long-scale-length variations through spline-fitting, (b)

wavelet decomposition and/or denoising of each of the wavelet components, (c) a separate neural

network for signal extraction working in the wavelet domain for each unprocessed or processed

wavelet component, (d) combining the outputs of all the neural networks, and finally (e) inverse

wavelet transform to return a clean signal in the time domain.

Wavelets are a kind of transform that break data into coefficients in both time and

frequency, thus getting around a major difficulty of the Fourier transform, which is the loss of all



6

time information after doing the transform. Many sorts of data have important features that are

localized in time, etc., like spectra, gas-chromatography readouts, etc., and applying a wavelet

transform will preserve this time localization.  Preserving exact peak locations while denoising is a

very important constraint on signal processing in equipment like gas chromatography.

A Fourier transform works by finding a set of coefficients of different-frequency sine

waves, which, when added together, will produce the original data. Since these sine waves stretch

over the entire time of the transform, the loss of time data is readily understandable. By

comparison, a wavelet transform works by finding a set of coefficients of wavelet functions which,

when added together, will produce the original data. These wavelet functions are actually a single

localized function that has been shifted and stretched in time by various amounts to provide a set

of basis functions to synthesize the signal. The shifting captures time information, while the

stretching captures frequency information (the frequency is the reciprocal of the amount of

stretch). These compact localized basis functions of the wavelet approach enable the wavelet

transform to maintain simultaneous time and space (or frequency) information, a very important

difference from the Fourier Transform.

Such fitting seems like a difficult task. But there is a convenient shortcut algorithm for

doing the fitting in the discrete case. One applies a pair of wavelet filters to the original data, and

keeps every second point of both, thus retaining the original number of data points. These filters

may be described as smooth (finds the average) and rough (finds the details). The smooth part is

approximately a local average of the data, while the rough part contains the local details.

This operation can be repeated on the resulting smooth part, resulting in a new smooth part

and a rough part corresponding to a length scale twice as large as the original’s. Continuing this

repeat produces a sequence of rough parts for length scales increasing as 1, 2, 4, 8, … (powers of
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2), with a smooth part at the highest length scale. The length scales correspond to frequencies 1,

1/2, 1/4, 1/8, … as one goes up the sequence, and the indexes of data points in a part corresponds

to time, with neighboring data points being separated in time by 1, 2, 4, 8, … as one goes up the

sequence.

This operation can be undone with a similar sort of filtering, which is especially convenient

if one wishes to proceed with further processing of the data in its untransformed form. And with

appropriate selection of filters, the forward and inverse filters can be made identical. Such

“orthogonal” filters include the Daubechies and Coifman filter families.

Our wavelet preprocessing, or more precisely, discrete wavelet transform (DWT) serves

three different purposes.  First, it provides a means to segment the data that allows progressive

processing that can save time. The specific method used for this work is a 4-level decimated

Daubechies-2 wavelet transform,5,6 which has a shape similar to the Gaussian with exponential tail

characteristic of GC peaks.  Second, signals most often occur within the smoother scales, which

were decimated repeatedly by the DWT process.  Consequently, such decomposition allows us to

automatically achieve data reduction if using such smoother components proves to be sufficient, as

it is in this case here.  A 16-fold data reduction was accomplished in this work.  Third, the

smoothness of the lower scales allows neural networks to perform better in those wavelet

component domains. In other words, the transform provides a way to “transfigure” the data into a

domain that favors neural network processing.

The function of the neural network7,8 is to extract relevant features that it learns from the

training process.  The training tunes the neural network to recognize certain common features that

would occur in the targeted signals.  A unique feature of our neural network processing is that data

is processed in the wavelet domain to take advantage of both smoothness of the signals and the
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data reduction in the smoother scales.  Secondly, by using or allowing more than one neural

network, we have devised a divide-and-conquer technique.  Separate neural networks may handle

separate decomposed wavelet signals representing different scales. Together, we have a

progressive system that allows us to trade off computational complexity with accuracy.

Furthermore, because of the adaptiveness of neural networks, we do not have to precisely tune the

wavelet preprocessing for absolute optimal denoising.  The two systems overlap and thus yield a

more flexible or “forgiving” signal processing.

The specific approach we use is a projection neural network. Artificial neural networks

mimic their biological counterparts by using networks of interconnected neurons through

appropriate synaptic connections to perform simple but effective parallel computations. A neuron

can be a simple “fire or not-fire” processing element or more effectively a computation unit that

sums all its inputs modified by the corresponding synaptic strengths as defined by the synaptic

values; then further modified by a non-linear transfer function. A projection neural network

projects the original input vectors into a space with one higher dimension before feeding the

projected vectors into the neural network.  A modified Logicon projection system is used for this

preprocessing, which enables the hidden unit’s decision boundaries to take on a much greater

variety of shapes, such as an ellipse, compared to straight lines in the case of backpropagation.9

This leads to more efficient use of neurons—we typically need only 6 or 9 neurons, which allows

fast and efficient generalization. Because of the four orders of magnitude change in the dynamic

range of the input data, we used four different neural networks to handle the different ranges and

these four neural networks use either 6 or 9 neurons.  The projection is described mathematically

by
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where I’
k is the projected input based on Ik; I

’
extra is the extra projected input to raise the dimension

by one; R is the projection radius; and S is the projection size.

Data is projected according to these equations, and vector quantization is performed to

obtain an initial weight vector for each hidden neuron.  The projection creates a new input

dataset one dimension higher than the original dataset because of the I’
extra.  The projected input

data are initially assigned randomly to the hidden units, and quantization is done by iteration

using the Linde-Buzo-Gray algorithm.10  This new dataset is then fed into a feed-forward neural

network for training.  Many different training algorithms can be used including conventional

gradient descent, quasi-Newton, and conjugate gradient methods.11

EXPERIMENTAL SECTION

The target analytes used in this study were chosen from a set of surrogate compounds

proposed for use in instrument characterization for detection of chemical weapons, and included

organophosphates and nitrogen containing materials.  Compounds used were trimethylphosphate

(TMP), 99+%; tributylphosphate (TBP), 99+%; 1-fluoro-4-nitrobenzene (FNB), 99%; 5-chloro-
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2-methylaniline (CMA), 97% (Aldrich, Inc.) Two organophosphate insecticides were included:

Malathion (Mal, [(dimethoxyphosphino-thioyl)thio]butanedioic acid diethyl ester), 98.2% was

obtained from Chem Service, Inc. (West Chester, PA) and Amiton (Am, S-[2-

(diethylamino)ethyl]phosphoro-thioic acid O,O-diethylester), 98%, was obtained from the

Edgewood Aresenal.  Compounds were suspended in dichloromethane (Mallinckrodt

SpectrAR®, 99.5% min.); dilutions were prepared using volumetric ware and gastight analytical

syringes, and sealed in septum-capped vials for use; septa were replaced at the end of each day to

prevent solvent loss.  All materials were used without further purification.

Compounds were separated on an HP/Agilent 5890 equipped with a capillary column

(DB-5, 10m x 0.100 mm, 0.10µ film, J&W Scientific).  The carrier was helium, with a column

head pressure of 50 psi, for a flow rate of approximately 0.5 ml.min-1.  Liquid injections (1.0 µl

throughout) were made with the split-splitless injector held at 250 C, operated in the splitless

mode with a 2 mm, silanized, straight-bore injection sleeve (Supelco, Inc.) and a purge “off”

time of 30 sec following injections.  Optimum precision was achieved using a hot needle

technique (Grob, 2001), with a preinjection heating period of five seconds.  Split vent and

septum purge flows were maintained at 10.0 and 1.0 ml.min-1, respectively. The column oven

was programmed: 40 °C, 20 sec hold, 50 °C.min-1 to 200 °C, then 30 °C.min-1 to 270 °C, with a 1

min final hold.  All target compounds were eluted within six minutes (Figure 1).

Compound elution times were confirmed with detection by an HP/Agilent 5970 mass

selective detector, and comparison of spectra with NIST libraries, prior to attaching the column

to a thermionic detector (Detector Engineering & Technology, Inc., Walnut Creek, CA),

equipped with TID-2 detector beads, operated in the N-P mode with air/H2 makeup gas (50.0 and

2.4 ml.min-1, respectively), and held at 300 °C.  Beads were exchanged when baseline depression
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following the solvent peak became significant; generally this was within five to seven days of

installation. We observed that even though the thermionic detector maintained good sensitivity,

there was subtle drift in response.  To minimize this effect, particularly during collection of data

for “blind” processing with the combined signal processing approach, filtered and unfiltered runs

were interleaved for each sample; samples were analyzed in triplicate with unfiltered signal

capture, and in duplicate for filtered capture.  Similarly, “blind” mixtures and known standard

blends were interleaved.

As we intended to evaluate the utility of the combined signal processing approach to

enhance sensitivity in medium-resolution, portable analytical equipment, we captured

chromatograms with a 12-bit analog to digital PCMCIA card (DAQ-Card 1200, National

Instruments, Inc. Austin, TX), using in-house, custom LabVIEW programs for signal acquisition.

Signals were designated as either “filtered” (10 Hz low-pass, two-pole R-C filter; sampling at

200 Hz, 50-point software moving average), or “unfiltered” (no R-C filtering, sampling at 1000

Hz, 3-point software moving average).  Filtered data were analyzed with a custom LabVIEW

chromatogram analyzer, based on peak detection from first derivatives calculated on moving

eight point data windows; unfiltered data could not be analyzed with this software, and were

processed in parallel with the combined wavelet/neural network system.

RESULTS AND DISCUSSION

Figure 2 shows the kind of signal recovery that can be attained using the combined

wavelet-neural network method. Repeated measurements recover the signal from two nitrogen

compounds having a signal-to-noise of ~0.16, where the noise is the full peak to valley width.

Even though the peaks are only twice as large as the bit
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resolution of the A/D converter, they are recovered cleanly, suggesting that the detection limit is

considerably lower.  When used separately, neural networks performed better than wavelets, but

neither performed as well as the combination.

An obvious question is how well this method compares to other methods.  Much of the

noise is high frequency, so a simple multiple-point running average can improve the signal-to-

noise ratio several fold, although peak broadening is produced by this approach and thus may

affect the exact peak positions.  Even more noise reduction can be achieved with more

sophisticated filtering.  A comparison of signal recovery using Butterworth/matched filtering and

the wavelet-neural network method is shown in Figure 3. Although the four peaks were resolved

by the Butterworth/matched filters combination, the doublets of the two peaks at ~5000 and

~12500 were not resolved by it, even though they were made visible using BISP. In addition, the

poor noise floor from the Butterworth/matched filters will lead to false peak detection.

A test matrix was constructed to determine the factor of improvement in detection

sensitivity and the reliability of detection using the wavelet-neural network signal processing

algorithms.  The first part of the test matrix consisted of seven calibration solutions having a

200-500 fold range in concentration each.  The lowest concentration turned out to be lower than

the detection limit ultimately achieved by BISP based on our current height threshold for

detection, and one intermediate-concentration solution was rejected from regression as statistical

outlier, likely a result of detector drift.  The second part consisted of 5 blind samples having

various concentrations of the calibrated compounds, with some nulls, and a couple spikes of a

blind compound (Amiton) near its suspected detection limit.  The complete comparison process

is shown for one sample near the detection limit in Figure 4.
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A typical calibration curve is shown in Figure 5 to illustrate two points.  At high

concentrations, variations in injection and detector performance limit the precision of the peak

areas to a range of 2-3.  Near the detection limit, the integrated peak area varies by more like a

factor of ten.  Detection limits for the wavelet-neural network method, based on current threshold

setting for peak identification, were approximately 1 pg for Malathion and the two alkyl

phosphates, 10 pg for chloro-methylanaline, and 50 pg for fluoro-nitrobenzene. The detection

limit for the conventional data processing was approximately 10 times higher for all compounds

when compared at the same level of human intervention—automatic peak detection using

mathematical criteria.  Peaks are visible at 2-3 times lower concentration, but they are not

reliably above false peaks due to noise.  Even lower detection limits for BISP are possible by

lowering the threshold setting; however more sensitive detection will result in more false

detections.  Based on data from our calibration sets, BISP has 3.5 false peaks versus over 200

false peaks using conventional processing; as a result, BISP can be made much more sensitive

before its false detection level matches that of conventional processing.

The results of the blind test are given in Table 1, which includes the formulated and

measured concentrations.  The ratio of measured-to-formulated concentrations vary similarly to

the calibration data in Figure 5. All spikes greater than the nominal detection threshold were

detected, albeit sometimes with a relatively large error consistent with the large deviation in the

calibration area near the threshold.  In one null case, a small peak was reported.  Subsequent

inspection showed that this was due to a solvent impurity, which introduces the double blind

aspect of the test.

During the calibration process, up to ten small “extraneous” peaks not associated with the

known spiked compounds were observed frequently, but not always, in the gas chromatograms.
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The obvious explanation is that these might be impurities in the solutions that are not above

signal to noise using conventional methods but were extracted using BISP.  This was verified by

evaporating a portion of solvent to 1% residual volume and injecting the concentrate into the gas

chromatograph.  About half the “extraneous” peaks were present in the solvent concentrate.

Because the levels are so low, it is possibly that many of the others were picked up during

processing, so the false positive rate, though difficult to estimate quantitatively, is very low.

One additional aspect of the blind test was the addition of Amiton at the 0.5 and 1.5 pg

levels, respectively, in two of the solutions.  The 0.5 pg spike was detected in three of three

injections and reported as an unknown hit.  The 1.5 pg was detected in two of three injections, so

was not reported as a reliable hit because we typically set the criteria for detection as 4 out of 6

detected peaks.  These variations in detection are consistent with the considerable variation in

area near the detection limit.

We believe that this is the first reported work using a combination of wavelet and

artificial neural network technologies to extract trace peaks found in chromatography. Other

researchers have applied neural network technology in this area, but most of the twenty-three

citations we found are not relevant to the work reported here.  There are two citations for using

both wavelet transforms and artificial neural networks on chromatography, but the objective was

classification, not trace signal extraction, and the mathematical details are significantly different.

Voisin12 and Hernandez-Borges13 reported processing the spectra by neural networks to

identify bacteria based on certain identifiers such as the concentration of n-alkanes or fatty acids

as measured by gas chromatography. Fatemi14 and Jalali-Heravi15 reported using ANN's to learn

from certain chemical parameters such as molecular weights and energy levels of the highest

occupied molecular orbitals, to predict retention indices or retention time, whereas Bell16 and
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Cai17 reported using the spectra as inputs to the neural network for chemical classification such

as level of toxicity or active substructures. Our work is more fundamental. We report here using

neural networks to recognize components of the spectraæ either part of a peak or the entire

peak. We use a moving window to keep the size within reasonable limits, whereas previous

reported work12,13,16,17 use the full spectrum. Each pass through our neural network yields a

single point on the spectrum, whereas the outputs of others' neural networks yield different

classifications. As a result, our work dovetails with these reported works, because if the spectra

can be made clean and noise-free then classification can be done relatively easily.

The two references using both wavelet and neural network on chromatography are used

liquid chromatography. Collantes18 reported using wavelets and neural networks on HPLC data

for the classification of L-tryptophan from six different manufacturers. Similar to the work here,

they used wavelet preprocessing, but the details are very different. They used a wavelet package,

a combination of wavelets and an oscillating function, whereas we use pure wavelets. The use of

the Haar function does not have a clear justification, since the stepwise function of Haar function

makes it ill suited for extracting smooth data, which is our goal. However, for the purpose of

classification into the six different manufacturers, details may not be needed, and Haar wavelets

do offer computation simplicity. Probably for the same reason, they only retained some of the

most important but not all wavelet coefficients as inputs to the neural network. However, these

coefficients alone were not sufficient, so they were supplemented with their corresponding

positional information. They used relatively straightforward backpropagation neural networks for

the purpose of classification, and achieved good results. Much like the works cited in the

previous paragraph, this work is mostly restricted to doing classification.
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Schirm19 reported using a combination of wavelet processing and neural network for

quality assurance of pentosan polysulfate based on fingerprint electropherograms. They reported

using Coiflet wavelets, which has higher computational demand than Haars orDachechies-2

wavelets, to preprocess the electrophoresis data. They found using a combination of mid-level

transforms yield the best results for baseline and noise considerations whereas we simply use the

smoothest level and have shown that it retains all vital information for our peak reconstruction.

The approach to wavelet preprocessing probably depends on the data to be processed as well as

the purpose of such preprocessing. Schirm’s group is to provide wavelet processed data as inputs

to the neural network for the purpose of classification whereas we are trying to use our neural

network to extract trace peaks. Collantes, Schirm, and our work reported here indicate that the

types and the details of preprocessing are important considerations for effective signal processing

design especially under resources constraints. Schirm reported using simple backpropagation

neural network, which performs the classification well. Our experience with backpropagation is

that it is inadequate in pulling out trace signals. Both Schirm and we share the same assessment

that a complete optimization of all neural network parameters would be extremely time-

consuming.

CONCLUSIONS

Advanced signal processing methods, as exemplified by the wavelet-neural network

approach shown here, have the potential to extract signals at a minimum of ten times lower

signal to noise than standard filtering and averaging techniques.  Although we have not done an

exhaustive comparison of all conceivable methods, the wavelet-neural network approach is better

than any we have tried.  The detection limit turned out to be lower than the bit resolution of the
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data acquisition equipment.  Consequently, we were not able to truly determine the absolute

sensitivity achievable with our BISP approach — it could be more than a factor of ten better than

a conventional approach.

The method should be generally applicable to a variety of chemical analysis equipment.

The current method, with proper calibration, works on any one-dimensional array, so spectra as

well as chromatograms are treatable.  Extensions to two-dimensional data (e.g., spectra versus

time, as in GC/MS) are possible.  The method really only accomplishes signal recovery, not

signal interpretation, so it is different from the standard objectives of chemometrics.  However,

without signal recovery, chemometrics will not be able to achieve its objectives. As a result, the

two methods are not redundant but complementary to each other. The enhanced signal recovery

might be especially important in small portable devices, which seek to minimize power

consumption at the expense of detection capability.  For instruments that operate in the signal-

averaging mode, it is important to remember that a tenfold difference in signal-to-noise detection

limit translates into a hundredfold difference in signal acquisition time, because the signal-to-

noise ratio increases as t1/2.
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Table 1.  Comparison of formulated and reported concentrations for the blind test.

Compound

(approx. detection limit) 1 2 3 4 5

Trimethyl phosphate injected 1.6 None 53 260 0.5

(1 pg) reported 2.2 n.d.* 66 193 n.d.

Tributyl phosphate injected 1.6 268 0.5 54 none

(1 pg) reported 3.4 500 1.5 23 n.d.

Malathion injected 1.5 51 0.5 102 none

(1 pg) reported 7.7 58 2.6 47 (0.6)**

Chloro-methylaniline injected 53 none 265 1060 5.3

(10 pg) reported 92 n.d. 415 417 d.

Fluoro-nitrobenzene injected 11.8 590 5900 5.9 none

(50 pg) reported d. 750 9415 n.d. n.d.

*n.d. = not detected

**actually due to a solvent impurity peak

***d. = detected based on manual examination
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Figure 1.  Sections from representative filtered (upper) and unfiltered (below) chromatograms.

Peaks are: 1. TMP (5.3 pg), 2. FNB (59 pg), 3. CMA (53 pg), 4. TBP (5.3 pg) and 5. (Mal (5.1

pg).  Amiton was not included in this run, but eluted just after TBP.
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Figure 2.  Replicate recoveries fluoronitrobenzene and chloromethylaniline peaks at very low

levels in a gas chromatogram (abscissa is point number, not time).  The small peaks may or may

not be real. The two scale bars for Run 2 show the relative scales for the upper and lower figures.



23

 

0 5000 10000 15000 
-1 
0 

1 

2 

3 With Butterworth/ 
Matched Filtering  

x 10 -4 

0 

2 

4 

6 

8 
With Wavel et/Neural 
Network  

0 5000 10000 15000 

x 10 -4 

Figure 3.  Comparison of recovered gas chromatographic peaks from noisy data (comparable to

that in Fig. 1.) using Butterworth/matched filtering and wavelet/neural net filtering.
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Figure 4.  Comparison of the conventional (lower left) and BISP or wavelet-neural network

(upper right) methods of data processing.  The expanded comparison in the lower right shows

clearly the superiority of the advanced signal processing method for extracting low-level signals.
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Figure 5.  Typical calibration curve for the training of the wavelet-neural network method.  This

is created in the “application” mode, i.e., the abscissa is a measured area used to calculate the

corresponding amount present.


